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Abstract: The two-electrons-in-two-orbitals active space model of electronic structure of biradicals and biradicaloids
is extended to a Hamiltonian that incorporates the usual kinetic and electrostatic energy terms, and also outside
electric and magnetic fields, spin-spin dipolar terms, and one- and two-electron spin-orbit coupling terms. It leads
to a more rigorous version of the Salem-Rowland rules for the dependence of T1-S0 spin-orbit coupling (SOC)
in biradicals and biradicaloids on molecular structure and conformation. For large T1-S0 SOC in a bitopic biradical,
(i) the localized orbitalsA andB that are singly occupied in the T1 state either interact covalently or one of them is
sufficiently lower in energy to have nearly double occupancy in the S0 state, (ii) on at least one atom of reasonably
high atomic number one p orbital contributes strongly toA and another toB, and (iii) the atomic contributions add
constructively rather than destructively. The nature of this addition is such that inverse heavy atom effects on SOC
are possible. Through-bond coupling is essential and its effects are apparent from simple resonance structures,
illustrated onR,ω-alkanediyl biradicals. Implications for the zero-field splitting parameters of triplet states are noted.

Introduction

In triplet photochemical reactions,1,2 excitation of organic
molecules from the ground state (S0) into the lowest triplet state
(T1) triggers geometrical changes, followed by intersystem
crossing (ISC) to S0 and by further geometrical changes
associated with thermal equilibration. The structure and ef-
ficiencies of formation of the products depend on (i) the nature
of the motions executed in the T1 state, (ii) the probability of
ISC at the various geometries reached in T1, and (iii) the motions
executed after return to the S0 state.
Factors (i) and (iii) are governed by the shapes of the T1 and

S0 energy hypersurfaces, the temperature, and the rate of
vibrational equilibration with the environment. In solutions,
vibrational equilibration with the solvent is fast. Transition state
theory can be used for the description of motion on the T1

surface, and steepest descent for the description of the final
motion on the S1 surface.3 In the low-pressure gas phase,
vibrational equilibration with the environment is slow and
RRKM theory can be used to describe the fate of the very
energetic S0 molecules produced by the ISC, almost indepen-
dently of the geometry at which ISC occurred (hot ground state
reactions). Our present interest is in solution reactions, in which
the geometry of return to the S0 state plays a paramount role.
Much effort has gone into the calculation of the T1 and S0

surfaces and into the rationalization of their shapes (e.g., using
correlation diagrams).4 The T1 surface tends to have low-energy
regions at three types of geometries:3,4 those where S0 also has
a minimum, those of triplet exciplexes, and “biradicaloid
geometries”, with two roughly nonbonding molecular orbitals
(MOs) each occupied by one electron. In solution photochem-

istry, ISC at biradicaloid geometries is particularly important,
since it provides access to new S0 minima and therefore
frequently leads to photochemical transformations.
Factor (ii), the T1-S0 ISC rate as a function of molecular

geometry, is less well understood. In biradicals with well
separated radical centers, hyperfine interactions provide the main
ISC mechanism.5,6 However, in those with radical centers close
together, of most interest to us presently, spin-orbit coupling7-9

(SOC) is believed to be dominant. Among the factors that
determine the ISC rate, the Franck-Condon weighted density
of states plays a similar role as it does in S1-S0 internal
conversion, but the ISC rate from a triplet sublevel Tu to a singlet
Sj is also proportional to the square of the SOC matrix element
〈Tu|ĤSO|Sj〉.
If the populations of the three sublevels are in rapid

equilibrium on the time scale of triplet lifetime, the T1 to Sj
ISC rate is dictated by the scalar

This can be thought of as the length of a vectorSOCj with
components〈Tu|ĤSO|Sj〉 (the “spin-orbit coupling vector” for
T1-Sj).
The present basis for qualitative understanding of the

structural dependence of〈Tu|ĤSO|S0〉 at biradicaloid geometries
is an analysis by Salem and Rowland10 performed for the 2-in-2
model of biradical electronic structure (active space: two
electrons in two orbitals, also known as the 3×3 CI model10-15).
Assuming that the biradical has two completely localized
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radical-carrying orbitalsA andB with some p character, they
found that strong SOC was favored by three factors: (i)
orthogonality of the axes of the two p orbitals, in keeping with
the El-Sayed rules16 for ISC in aromatics, (ii) “ionic” (zwitte-
rionic, hole-pair) character in the S0 wave function, and (iii)
spatial proximity of the orbitalsA andB.
A fair amount of theoretical work on spin-orbit coupling in

biradicals and biradicaloids followed Salem and Rowland’s
original paper. Shaik and Epiotis17 analyzed qualitatively
various reaction paths involving biradicaloid geometries but their
assumption of a closed-shell (single determinant) S0 wave
function appears hard to justify. Theab initio results of Carlacci
et al.18 for the trimethylene biradical were compatible with the
Salem-Rowland rules. Additional computational results have
been obtained for 1,2,19-24 1,3,21,22,24-26 and 1,421,25,27biradicals.
In the present paper, we elaborate and illustrate our restate-

ment2,4,22,28of the Salem-Rowland rules. Regarding the need
for “ionic” character, we show that only the introduction of the
symmetrized hole-pair structure (A2 + B2) into the S0 wave
function of a perfect biradical is helpful for SOC (in all but
axial13 biradicals, a weak polarization of the S0 state fails to
introduce the symmetrized hole-pair structure and does not help).
The effect of the two-electron part of the SOC operator, ignored
by Salem and Rowland,10 is found to be negligible.
We also consider explicitly the delocalization ofA andB into

the saturated skeleton and the resulting vectorial one- and two-
center contributions from orbital pairs on individual atoms,2,4,22,28

which can interfere constructively or destructively. The mode
of interference can often be discerned from molecular symmetry.
Numerical results demonstrate that this through-bond mechanism
dominates SOC in biradicals. Against the original expecta-
tions,10 the through-space distance betweenA andB plays a
subordinate role. We illustrate the results onR,ω-alkanediyl
biradicals. Finally, we caution that the 2-in-2 model, on which
the rules are based, is only valid for bitopic biradicals.
Subsequent papers in this series describeab initio computa-

tions of spin-orbit coupling in a wide variety of biradicals and
biradicaloids, and analyze the results for the bitopic ones in
terms of the presently discussed algebraic 2-in-2 model.

Results and Discussion

States of an Electron Pair. We first summarize the states
of two electrons confined to two orbitals in the absence of spin-
orbit coupling.4,12-14,28,29

(a) One-Electron Functions. The spin space is spanned by
the orthonormal spin functionsR andâ, and the orbital space
by the two most localized orthonormal orbitalsA andB (minimal
interorbital and maximal intraorbital electron-electron repul-
sion). The two spaces are isomorphic, and we use the symbol
a when eitherR or A is meant, and the symbolb when eitherâ
or B is meant.
The equivalence of any two-level problem to the problem of

a particle of spin1/2 in magnetic field30 results from the fact
that any Hermitean 2×2 matrix is fully characterized by its four
complex elements. The average of the diagonal elements is
chosen as the energy zeroh0, and their difference as well as
the real and imaginary parts of the off-diagonal element can be
thought of as three components of a real vectorh, hx, hy, and
hz:

In the spin space,h ) (gâe/2)B, where theg factor is close
to 2,âe is the Bohr magneton, andB is external magnetic field,
with componentsBx, By, andBz in real space. In an unperturbed
system,B ) h ) 0, both eigenstates have zero energy, and are
described by the functionsR and â or their arbitrary linear
combinations.
In orbital space,h vanishes for an unperturbed perfect

biradical, which has two orbitals of zero energy, described by
the functionsA andB or their arbitrary linear combinations.
Analogous to the three components ofB, one-electron perturba-
tions of a perfect biradical come in three distinct flavors, and
these correspond to the three components of vectorh in the
abstract space of biradicaloid structure.
The one-electron part of covalent perturbation,hx )

Re〈A|ĥ1|B〉, produces a homosymmetric biradicaloid.13,14,31This
perturbation can be introduced only by a change in molecular
structure, not by introduction of an outside field. It is equivalent
to the Hückel resonance integral between the localized orbitals
A andB. An example is the untwisting of ethylene away from
the 90° twist angle.
The magnetizing perturbation,hy ) Im〈A|ĥ1|B〉, produces a

magnetized biradical. It cannot be introduced by a change in
molecular structure, but only by introduction of an outside
magnetic field. An example is an O2 molecule placed in
magnetic field directed along the molecular axis.
The one-electron part of polarizing perturbation,hz )

(〈A|ĥ1|A〉 - 〈B|ĥ1|B〉)/2, produces a heterosymmetric biradica-
loid.13,14,31 It can be introduced either by a change in the
molecular structure of the biradical or by imposition of an
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outside electric field with a nonvanishing component along the
line that connects the centers of the orbitalsA andB. Both of
these perturbations make the energies of these localized orbitals
different, and a polarizing perturbation is equivalent to the
introduction of a difference between the Hu¨ckel Coulomb
integrals of orbitalsA and B. Examples are 90° twisted
aminoborane, or similarly twisted ethylene placed in an electric
field with a non-zero component along the CC axis.
In general, more than one of the perturbations may be present

simultaneously (in nonsymmetric13,14,31biradicaloids both co-
valent and polarizing structural perturbations are present).
(b) Two-Electron Functions. Both in spin space and in

ordinary space, the two-electron function space is spanned by
the four products,a(1)a(2), a(1)b(2), b(1)a(2), and b(1)b(2).
Following the usage that is standard for spin space,32,33 we
choose the basis function

T or Σ ) 2-1/2[a(1)b(2)- b(1)a(2)]

in the subspace that is antisymmetric relative to electron label
permutation, and the functions

S[x] or Θ[x] ) -2-1/2[a(1)a(2)- b(1)b(2)]

S[y] or Θ[y] ) 2-1/2i[a(1)a(2)+ b(1)b(2)]

S[z] or Θ[z] ) 2-1/2[a(1)b(2)+ b(1)a(2)]

in the subspace that is symmetric. ForT andS, a ) A, b ) B,
and forΣ andΘ, a ) R, b ) â. The phase factors on the right
secure cyclic permutation properties with regard tox, y,andz
(Appendix).
The total wave functions in the 2-in-2 model are elements in

the direct product of the spin space and the orbital (geminal)
space. Pauli principle restricts their number to those that are
antisymmetric with respect to electron interchange: three singlet
levels (S[u]Σ, u ) x, y, z) and the three sublevels of a triplet
(TΘ[u], u ) x, y, z).
The average energyE(T1) of the triplet sublevels is

E(T1) ) 〈A|ĥ1|A〉 + 〈B|ĥ1|B〉 +

〈AB|e2/r12|AB〉 - 〈AB|e2/r12|BA〉

) hA + hB + JAB - KAB

The Hamiltonian matrix simplifies if we first make judicious
use of the two available degrees of rotational freedom (Ap-
pendix). One of these is the freedom of orbital rotation in the
one-electron function space. For a general choice ofA andB,
the elements〈S[x]Σ|Ĥ2|S[z]Σ〉 and 〈S[z]Σ|Ĥ2|S[x]Σ〉 are non-
zero. After rotation in the orbital space to the most localized
orthogonal orbitals possible,34 they vanish. A simple algorithm
for finding these orbitals is available.13 The other degree of
freedom is the rotation of the molecular coordinate system in
real space. By choosingx, y, andz to coincide with the principal
axes of the spin-spin dipolar coupling tensor, we diagonalize
its contribution to the triplet block.
With E(T1) as the energy zero, the Hamiltonian matrix (1)

for the active space of the 2-in-2 model then is

For the moment, we neglect the elements ofĤSO. The matrix
then separates into two completely analogous 3×3 blocks, one
for the singlets and one for the triplets. We treat them in parallel
in order to bring out the formal identity of the results.
We first redefine a structurally perfect biradical as one for

which γAB ) δAB ) 0. In an unperturbed (E ) B ) 0) perfect
biradical, the Hamiltonian matrix is then diagonal, and the six
functionsS[u]Σ andTΘ[u], u) x, y, z, describe the eigenstates.
The energies of the triplet levels are split by up to a cm-1 or

so by the magnetic dipole-magnetic dipole interaction of the
two electrons,

Du ) (g2âe
2/2)〈T|(r122 - 3u12

2 )/r12
5 |T〉

whereu) x, y, or z, andr12 is the interelectronic distance. The
Dx, Dy, andDz values measure the anisotropy of the electron
distribution and add up to zero (we neglect the small electron-
electron contact term, which shifts all three levels equally). The
molecular axes are usually labeled so as to produce the order
Dz > Dy > Dx. However, the analogy between the singlet and
the triplet subspace is illustrated best if we adoptDz > Dx >
Dy, with TΘ[z] the lowest in energy, andTΘ[y] the highest.
The energies of the singlet levels are split by ca. 103 to 104

cm-1 by electric charge-charge interactions of the two elec-
trons. The exchange integralKAB between the two localized
orbitalsA andB is the self-repulsion of their overlap charge
density and measures their interpenetration,

KAB ) 〈AB|e2/r12|BA〉

whereas the integralK′AB is related to the separation of their
centroids [it is equal to the exchange integral between the two
most delocalized orbitals, 2-1/2(A ( B)]

K′AB ) [(〈AA|e2/r12|AA〉 + 〈BB|e2/r12|BB〉)/2-

〈AB|e2/r12|AB〉]/2
) [(JAA + JBB)/2- JAB]/2

The energy of theS[z] state lies above that of the average of
the three nearly degenerate triplet sublevels, and is followed
by S[x], with S[y] at the highest energy (K′AB g KAB g 0). In
pair biradicals (K′AB > KAB = 0),13 such as orthogonally twisted
ethylene,A andB are well separated, the triplet sublevels are
nearly degenerate withS[z], and the much higher lying states
S[x] andS[y] are also very close in energy to each other. In
axial biradicals (KAB ) K′AB),13 such as linear carbene, the
triplet sublevels lie well belowS[z], which is degenerate with
S[x], andS[y] is much higher. Most among the perfect biradicals
are intermediate between the pair and axial limits.
Perturbation of a perfect biradical by a structural change or

by an external field introduces off-diagonal elements into the
Hamiltonian matrix. In the triplet subspace, they represent the
Zeeman perturbation by thex, y, andzcomponents of an outside
magnetic fieldB. In the singlet subspace, they represent a
generalization of the one-electron perturbations introduced
above, and are due to the covalent interaction between the
orbitalsA andB (γAB, analogous toBx in the spin space), to the

S[x]Σ S[y]Σ S[z]Σ Tθ[x] Tθ[y] Tθ[z]

S[x]Σ 2K′AB (δAB - eE·rAB)/i 2iâeB·(r̂×∇)AB ih2xx
SO ih2xy

SO ih2xz
SO

S[y]Σ i(δAB - eE·rAB) 2(K′AB + KAB) γAB/i h1x
SO+ h2yx

SO h1y
SO+ h2yy

SO h1z
SO+ h2yz

SO

S[z]Σ 2âeB·(r̂ × ∇)AB/i iγAB 2KAB h2zx
SO/i h2zy

SO/i h2zz
SO/i

Tθ(x] h2xx
SO/i h1x

SO+ h2yx
SO ih2zx

SO -Dx gâeBz/i igâeBy
Tθ[y] h2xy

SO/i h1y
SO+ h2yy

SO ih2zy
SO igâeBz -Dy gâeBx/i

Tθ[z] h2xz
SO/i h1z

SO+ h2yz
SO ih2zz

SO gâeBy/i igâeBx -Dz

(1)
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magnetizing perturbation by an outside magnetic fieldB [2âeB‚
(r × ∇)AB, analogous toBy in the spin space], and to the
polarizing perturbation (analogous toBz in the spin space),
induced by molecular structure (δAB) and/or an outside electric
field E (-eE‚rAB):

with r̂ standing for the position operator (the zero differential
overlap approximation is used),e< 0 for electron charge,l̂ for
the angular momentum operator, and∇ for the gradient operator.
The three components ofr̂ × ∇ are the differential rotations
aroundx, y,andz: ∂/∂ê, ∂/∂η, and∂/∂ú.
The expressions for the energies and eigenfunctions of the

Hamiltonian as a function of the three types of perturbation are
formally identical in the singlet and the triplet subspace.15,28 If
only one of the three possible perturbations is present, the
energies plotted in Figure 1 apply, and are valid equally for the
three triplet and the three singlet states, with vastly different
energy scales. If two or all three perturbations are present, the
curve crossings are generally avoided. The significance of the
crossings for singlet photochemistry (“funnels” in S1), “sudden
polarization”,35 orbital angular momentum quenching (“sudden
magnetization”), etc., has been discussed.28

The lowest singlet state S0 of an unperturbed perfect biradical
is described by the functionS[z] (in perfectly axial biradicals,
degenerate withS[x]). It will be important for spin-orbit
coupling that S0 can acquire partialS[y] character in two linearly
independent ways (Figure 1): (i) a covalent perturbation of

arbitrary strength causes the “dot-dot” structureS[z] and the
“symmetrized hole-pair” structureS[y] to mix through the off-
diagonal elementγAB, and (ii) a polarizing perturbation by an
off-diagonal elementδAB larger than a critical threshold value
δ0 brings about a state crossing and causes the S0 state to be
described by an uneven mixture of the “symmetrized” and
“antisymmetrized” hole-pair structuresS[x] andS[y]. Since13

δ0 ) 2[K′AB(K′AB - KAB)]
1/2

we haveδ0 ) 0 in the limit of an exactly axial biradical. In
this special case, an arbitrarily small polarizing perturbation will
stabilize theS[x] component of the initially degenerate S0 state
by acquisition of someS[y] character. Combinations of the two
kinds of perturbation are also possible.
In the way of examples, we note that the S0 state of

orthogonally twisted ethylene, a perfect biradical that is nearly
exactly of the pair type (KAB very small), can acquireS[y]
character (i) by twisting away from orthogonality and (ii) by
polarization in a very strong electric field (e.g., by placing a
positive charge of more than 1.735 elementary units on the CC
axis at a distance of 1.85 Å from a C atom13) or by heteroatom
replacement (e.g., going at least to an orthogonally twisted
formaldiminium cation or more surely, to aminoborane13).
Along similar lines, the S0 state of bent carbene, a heterosym-
metric biradicaloid (δ > 0, since orbitalB has some s character
and lower energy), has considerableS[y] character (a weak
heterosymmetric perturbation is sufficient since linear carbene
is a perfectly uniaxial biradical, withK′AB ) KAB). The
existence of two distinct types of perturbed biradicals for which
SOC can be large was noted originally by Salem and Rowland.10

Spin-Orbit Coupling. The matrix elements〈Tx|ĤSO|Sj〉,
〈Ty|ĤSO|Sj〉, and 〈Tz|ĤSO|Sj〉 are responsible for the weak
interaction between the singlet and triplet subspaces in the
Hamiltonian matrix. The operatorĤSO ) Ĥ1

SO + Ĥ2
SO de-

scribes the interaction of the spin magnetic moments of electrons
with the magnetic moments caused by their own orbital motion
[Ĥ1

SO ) ∑iĥ1
SO(i)], and with that of other electrons, as well as

the shielding effects of the latter [Ĥ2
SO ) ∑i,jĥ2

SO(i,j), i * j].
Ignoring the presumably negligible effect of an external electric
field on this operator, it has the form36

where the sum runs over all nucleiκ, Zκ is the atomic number
of nucleusκ, r̂κ is the position operator of the electron relative
to nucleusκ, l̂ iκ is the angular momentum operator with nucleus
κ taken as the origin,ŝ is the spin angular momentum operator,
and p̂ is the linear momentum operator.
Evaluation of the elements ofĤSO in the Hamiltonian matrix

gives

h1u
SO) gâe

2∑
κ

Zκ〈A||rκ|-3(r̂κ × ∇)u|B〉

h2xu
SO ) (gâe

2/2)[〈AB|gu|AA〉 - 〈AB|gu|BB〉]

h2yu
SO ) (gâe

2/2)i[〈AB|gu|AA〉 + 〈AB|gu|BB〉]

h2zu
SO ) (gâe

2/2)〈AB|gu|BA〉

(35) Bonacˇić-Koutecký, V.; Bruckmann, P.; Hiberty, P.; Koutecky´, J.;
Leforestier, C.; Salem, L.Angew. Chem., Int. Ed. Engl. 1975, 14, 575.

(36) McWeeny, R.; Sutcliffe, B. T.Methods of Molecular Quantum
Mechanics; Academic Press: New York, 1969; p 214.

Figure 1. Energies of either (i) the three singlet states or (ii) the three
triplet states of the 2-in-2 model of biradical structure in arbitrary units,
as a function of the absolute value of the off-diagonal Hamiltonian
matrix element, [y][z] (covalent perturbation for singlets, or magnetic
field in x direction for triplets), [x][y] (polarizing perturbation for
singlets, or magnetic field inz direction for triplets), or [x][z]
(magnetizing perturbation for singlets, or magnetic field iny direction
for triplets). Top, center, and bottom rows show results for three choices
of (i) KAB, K′AB (top, axial biradical, and bottom, pair biradical) or (ii)
-Dz/2, -Dx/2, in the same arbitrary units. The energy labeled zero is
(i) equal to or (ii)-2Dy/3 below the average triplet energy.

γAB ) 〈A|ĥ1|B〉 + 〈B|ĥ1|A〉 + 〈AA|e2/r12|AB〉 +

〈BB|e2/r12|BA〉

δAB ) 〈A|ĥ1|A〉 + 〈AA|e2/r12|AA〉/2-

(〈B|ĥ1|B〉 + 〈BB|e2/r12|BB〉/2)

rAB ) 〈A|r̂|A〉 - 〈B|r̂|B〉

(r̂ × ∇)AB ) 〈A|r̂ × ∇|B〉 ) (i/p)〈A| l̂ |B〉 ĥ1
SO(i) ) (gâe

2/p2)∑
κ

Zκ|rκ|-3l̂ iκ·ŝi

ĥ2
SO(i,j) ) -(gâe

2/p2) rij
-3[( r̂ i - r̂ j) × p̂i]·(ŝi + 2ŝj)
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whereu ) x, y, zand

i.e.,

etc.

All the elements ofĤ2
SO that occur in the Hamiltonian

matrix for the active space depend on the overlap density of
the localized orbitalsA andB and would be neglected in the
zero differential overlap approximation. In the case ofh2zu

SO the
overlap density appears twice and this integral is particularly
small. The elementsh2xu

SO vanish exactly in a perfect biradical,
in which A and B are equivalent. Our numericalab initio
calculations for selected examples with polarized basis sets and
configuration interaction of reasonable size22,37confirmed that
the size of the elements ofĤ2

SO within the active space matrix
is indeed negligible and we ignore them in the following. In
contrast, the elements ofĤ2

SO that involve both the active space
and inner shells are large. After all,Ĥ2

SO is primarily due to
the shielding of nuclei by inner shell electrons, and provides a
contribution that is roughly half the size of that ofĤ1

SO and has
the opposite sign. We shall return to this issue below.

To evaluate the elements ofĤ1
SO, the orbitalsA andB are

expressed in terms of an AO basis:

andh1u
SO becomes a triple sum over atom labelsκ and orbital

labelsµ andν:

For the atomic basis set we use the pre-orthogonal natural
hybrid orbitals introduced by Weinhold.38 Each of these is
strictly localized on a single atom and orthogonal to other hybrid
orbitals located on the same atom but not to hybrid orbitals
located on other atoms.

As shown by numerical evaluation37 for selected examples,
the contributions toh1u

SO provided by nucleusκ and those pairs
of natural hybrid orbitals that are not both centered onκ are
very small due to the factor|rκ|-3 in the integral, and we shall
neglect them. Since the operatorr̂κ × ∇ annihilates an s orbital
located onκ, the summation is then restricted to non-hydrogen
atomsκ only.

In evaluating the remaining terms, in which|µ> and |ν>
are both located on atomκ, the presence of core electrons, and
specifically, the electrons of the inner shells, cannot be ignored.
Since the two-electron two-orbital model only deals explicitly

with the active space, it is appropriate to account for the effect
of the electrons of the fixed core by replacing the factor
gâe

2Zκ|rκ|-3 in the integral by the empirical value of the atomic
spin-orbit coupling constantúκ for the valence p orbitals on
atom κ.39 Since we are primarily interested in organic mol-
ecules, we ignore any contributions to the natural hybrid orbitals
made by d AOs and those of an even higher angular momentum.
The spin-orbit coupling constant increases rapidly with increas-
ing atomic numberZκ.

Disregarding Rydberg-type orbitals with very low occupan-
cies, each atomκ that carries four valence orbitals contributes
a sum over the twelve ordered non-diagonal pairs of its four
natural hybrid orbitals. Adding up the two contributions from
any of the only six possible hybrid orbital pairs, taken in one
and the other order, then produces six numbers:

whereκ runs over non-hydrogen atoms and the hybrid orbital
pair label [µν]κ (µ < ν) runs over all six orbital pairsµ,ν on
atomκ. Numerical evaluation22,37 shows that on most atoms,
the coefficient products in the parentheses are small, and all
contributions are negligible. On some atoms, one and occasion-
ally two or more are large, making a qualitative interpretation
of the results facile.

Atomic Vectorial Contributions to SOC. It appears most
convenient to base qualitative understanding on the consideration
of the vectorial contributionsúκ∑[µν]κ(cAµcBν - cAνcBµ)〈µ|r̂κ ×
∇|ν〉 (µ < ν) provided by each atom. We therefore view
h1x
SO, h1y

SO, andh1z
SO as components of a vectorhSO, equal to the

sum of all these atomic vectorial contributions. Once the
orbitals A and B are known, each atomic vector is readily
evaluated, since for orbitals located on atomκ, (r̂ × ∇)zpx )
-py, (r̂ × ∇)zpy ) px, (r̂ × ∇)zpz ) (r̂ × ∇)zs ) 0, etc., by
cyclic permutation of indices.

The vector〈µ|rκ × ∇|ν〉 with components〈µ|(rκ × ∇)x|ν〉,
〈µ|(rκ × ∇)y|ν〉, and〈µ|(rκ × ∇)z|ν〉 is perpendicular to the axes
of the two hybrid orbitalsµ andν. To determine its sense, the
hybrid orbitals are represented by p orbitals drawn with their
signs as they appear in the orbitalsA andB. Then,ν is rotated
so as to make it coincide withµ. When the direction of this
rotation is indicated with the curved fingers of the left hand, its
thumb points in the direction of〈µ|rκ × ∇|ν〉. The absolute
direction depends on the arbitrary choice of phase of orbitalsA
andB, but the relative directions of the atomic contributions,
and thus their constructive or destructive interference as they
add to formhSO, are independent of this choice. The length of
the vector〈µ|rκ× ∇|ν〉 is unity if bothµ andν are pure p orbitals
with axes at 90° to each other. As s orbital contributions toµ
andν increase, the vector becomes shorter.

A Reformulation of Salem-Rowland Rules for Spin-
Orbit Coupling in Biradicals . In terms of state wave functions
based on the most localized orbital setA, B, with molecular
axes chosen as the principal axes of the spin-spin dipolar
coupling tensor, in the absence of outside fields, with the neglect
of ĥ2

SO, and with the usual definition of triplet zero-field
splitting parametersD ) 3Dz/2 andE ) (Dx - Dy)/2, the
Hamiltonian matrix for the active space of the two-electron two-
orbital model takes a simplified form (2) suitable for a discussion
of the structural dependence of SOC.

(37) Havlas, Z.; Downing, J. W.; Michl, J. Unpublished results.
(38) Reed, A. E.; Curtiss, L. A.; Weinhold, F.Chem. ReV. 1988, 88,

899. (39) McClure, D. S.J. Chem. Phys.1949, 17, 905.

ĝ) r12
-3(r̂2 - r̂1) × (∇̂1 + ∇̂2)

〈AB|gu|AA〉 ) 〈A(1)B(2)|r12-3[( r̂2 - r̂1) ×
(∇̂1 + ∇̂2)]u|A(1)A(2)〉

|A〉 ) ∑
µ

cAµ|µ〉

|B〉 ) ∑
ν

cBν|ν〉

h1u
SO) gâe

2∑
κ

Zκ∑
µ
∑

ν

cAµcBν〈µ||rκ|-3(rκ × ∇)u|ν〉

h1u
SO) ∑

κ

úκ ∑
[µν]κ

(cAµcBν - cAνcBµ)〈µ|(r̂κ × ∇)u|ν〉
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(a) Perfect Biradicals. Consider first a perfect biradical, in
which the covalent (γ) and polarizing (δ) structural perturbations
vanish. Only the highest energy singlet state,S[y]Σ, mixes with
the triplet sublevels, and its interaction with theuth sublevel is
dictated byh1u

SO.

Since the wave function of the lowest state S0 is S[z]Σ (in
axial biradicals, degenerate withS[x]Σ), we obtain the Salem
and Rowland result10 that in perfect biradicals the triplet
sublevels do not couple to S0 at all. Triplet to lowest singlet
conversion by the spin-orbit coupling mechanism requires that
the biradical be perturbed to a biradicaloid in order for its S0

state to acquire at least some and preferably a large amount of
S[y]Σ character.

(b) Biradicaloids. Whenγ or δ or both are different from
zero, the eigenfunctions of the Hamiltonian,Sj (j ) 0, 1, 2),
acquire the form

Using the previously introduced notation, the final general
formulas of the 2-in-2 model for the spin-orbit matrix elements,
the spin-orbit coupling vectorSOC, and the scalar coupling
SOCbetween S0 and the sublevels of T1 are

For a large value ofSOCbetween S0 and T1, (i) perturbation
of the perfect biradical needs to be such as to make the
coefficientC0y large. Two ways of achieving this have been
described above. The other requirement is for the vectorhSO

to be long. This requires (ii) large individual atomic vectorial
contributions and (iii) constructive rather than destructive
addition of these contributions. A large atomic contribution is
provided when one of the orbitalsA andB contains a large
contribution from a p orbital on an atom of a relatively high
atomic numberZκ and thus atomic spin-orbit constantúκ, and
the other, a large contribution from a different p orbital on the
same atom. The constructive or destructive mode of addition
of atomic contributions is often apparent from symmetry or
approximate symmetry.

The direction of the final vectorhSO normally is of lesser
importance: the squares of its projections into the principal axes
x, y, andz determine the relative rates at which the individual
triplet sublevels Tx, Ty, and Tz convert to S0.

These results permit a revised formulation of the Salem-
Rowland rules for spin-orbit coupling in a general perturbed
biradical:
In order for SOC between S0 and T1 to be large, the most

localized orthogonal orbitals A and B singly occupied in T1

should be as follows:
(i) They either interact coValently through a non-zero

resonance integral and/or are sufficiently different in energy
for one to haVe electron occupancy near two in S0.
(ii) The biradical contains one or more high-Z atoms at which

one p orbital contributes strongly to A and another to B.
(iii) These p orbitals enter into A and B in a manner such

that the contributions on all such atoms add rather than cancel.
Condition (i) is a more rigorous statement of the Salem and

Rowland’s requirement10 of “ionic character” in S0. For systems
with A andB at equal or similar energies, it is met at the expense
of increasing the energy of T1 above its minimum.
If the condition is to be met by making the energies ofA and

B different enough for the hole-pair structure to dominate S0, it
is essential to go beyond the critical threshold value of the
heterosymmetric perturbationδ0 discussed above. This value
is smallest whenA andB are located at the same atom and
generally increases with their increasing separation. Thus, in
a carbene, already a small difference in the content of s character
in the two nonbonding orbitals is sufficient, whereas in a twisted
ethylene, one of the carbons needs to be replaced by an atom
at least as electronegative as a positively charged nitrogen. In
1,3 biradicals the required electronegativity difference is even
larger, and indeed, there is experimental evidence40 that a
moderate degree of polarization does not enhance the rate of
intersystem crossing in 1,3-diaryl-1,3-cyclopentanediyls.
Condition (ii) effectively requires the principal parts of the

orbitalsA andB to be represented by p orbitals whose axes are
orthogonal or close to it, and thus often runs directly counter
to condition (i) if their energies are similar.
Through-Bond Coupling. In order to evaluate properly the

above condition (ii), it is essential to work with a reasonably
realistic representation of the localized orbitalsA andB that
includes any partial delocalization through the saturated chain
that is due to through-bond interactions. Even though the extent
of such delocalization is small, the numericalab initio results
reported in the following papers of this series show that through-
bond interactions normally dominate SOC in saturated biradicals
(since numerical results were not available, this was not
appreciated by Salem and Rowland in their pioneering study10).
The insignificance of through-space interactions is due to the
factor |rκ|-3 in the matrix element, which causes them to fall
off very rapidly with the distance between the orbitals involved.
Since two-center terms hardly ever play an important role, we
have neglected them in the simplest formulation of the 2-in-2
model.
For instance, even in twisted ethylene (Chart 1), the dominant

interaction is not provided by the two-center term involving

(40) Kita, F.; Nau, W. M.; Adam, W.; Wirz, J.J. Am. Chem. Soc.1995,
117, 8670.

(41) Langhoff, S. R.J. Chem. Phys.1974, 61, 3881.

S[x]Σ S[y]Σ S[z]Σ Tθ[x] Tθ[y] Tθ[z]

S[x]Σ 2K′AB δAB/i 0 0 0 0
S[y]Σ iδAB 2(K′AB + KAB) γAB/i h1x

SO h1y
SO h1z

SO

S[z]Σ 0 iγAB 2KAB 0 0 0
Tθ[x] 0 h1x

SO 0 D/3- E 0 0

Tθ[y] 0 h1y
SO 0 0 D/3+ E 0

Tθ[z] 0 h1z
SO 0 0 0 -2D/3

(2)

Sj ) CjxS[x]Σ + CjyS[y]Σ + CjzS[z]Σ

〈Tu|ĤSO|S0〉 ) C0yh1u
SO) C0y∑

κ

úκ ∑
[µν]κ

(cAµcBν - cAνcBµ) ×

〈µ|(r̂κ × ∇)u|ν〉

SOC) C0yh
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(cAµcBν - cAνcBµ) ×

〈µ|r̂κ × ∇|ν〉

SOC) C0y|hSO|
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the singly occupied p orbitals on the two neighboring CH2carbons,
but by the (oppositely signed) sum of the terms involving one
of these p orbitals at a time along with the small portion of the
other singly occupied orbital that is delocalized by hypercon-
jugation onto the adjacent CH2 group.22,37 For more distant
carbons, the two-center terms are even less important.
Use of Symmetry. In symmetrical biradicaloids, condition

(iii) is the longest recognized and most obvious in that it follows
immediately from group theory. It is more difficult to apply to
biradicaloids whose geometries lack any helpful symmetry
elements.
The use of group theory in the evaluation of SOC in

molecules8 in general and biradicaloids17 in particular has been
common. In our case, the irreducible representations to which
the space parts of S0 and T1 belong are readily identified once
the symmetries of orbitalsA andB or their symmetry-adapted
combinations are determined. In biradicaloids, the energies of
A andB or their symmetry-adapted combinations are different,
and the space part of S0 in σ,σ andπ,π biradicaloids, but not
σ,π biradicaloids, typically belongs to the totally symmetric
representation. Since the singlet spin functionΣ is also totally
symmetric, the overall symmetry of S0 of typical biradicaloids
is usually easily determined. In perfect biradicals, the energies
of A andB are equal since they normally belong to a degenerate
representation. The symmetry determination then tends to be
a little more complicated, but is not needed for our purposes,
sinceSOCvanishes as noted above.
The space part of T1 belongs to the product of irreducible

representations of the two symmetry-adapted singly occupied
orbitals. Its three possible spin partsΘ[x], Θ[y], and Θ[z]

transform like the rotationsRx, Ry, and Rz, and the overall
symmetries of the total functionsTΘ[x], TΘ[y], andTΘ[z] are
thus again easily determined. Only those of the three that belong
to the same irreducible representation as S0 can be mixed with
it by action of the totally symmetric spin-orbit coupling
operator. For others,SOCvanishes.
Illustrations. To illustrate the qualitative use of the revised

rules for SOC in biradicals and biradicaloids, consider the all-
anti (planar zigzag) conformations ofR,ω-alkanediyl biradicals
(Chart 1, Table 1, whose footnotec states the directions of
molecular axes).
(a) Odd Number of Carbon Atoms. In its hypothetical

linear geometry (1), carbene has the orbitalsA andB represented
by the px and py AOs on carbon. Since the resonance integral
between them vanishes by symmetry, and since their energies
are equal by symmetry, it is a perfect biradical and S0 will not
be mixed with T1 by SOC. Note that linear carbene violates
condition (i) while it satisfies condition (ii). Since it contains
only one non-hydrogen center, condition (iii) is not applicable.
The vanishingSOCalso follows directly from symmetry: the
degenerate S0 belongs to∆g and T1 belongs toΣg

-. Therefore,
TΘ[x] and TΘ[y] belong jointly to Πg, and TΘ[z] to Σg

+.
These are both different from∆g. Note that symmetry permits
thezsublevel of T1 to spin-orbit couple with the excited singlet
Σg

+ (in our notation,S[y]Σ), as expected from the 2-in-2 model.
In the realistic bent geometry of carbene (2), A andB still

have a zero resonance integral, but their energies are different
since one contains an admixture of s character. Since linear
carbene is an axial biradical (δ0 ) 0), already a small energy

Chart 1
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difference is sufficient to guarantee an electron occupancy close
to two in the lower energy orbital in the S0 state. Conditions
(i) and (ii) are now both fulfilled, while condition (iii) is still
irrelevant. We expectSOC to increase strongly as the HCH
valence angle decreases from 180°. It should stop increasing
asC0y approaches its limiting value of 2-1/2. Probably even
before then, it will start dropping as the valence angle ap-
proaches 90°, at which point the more stable orbitalB loses
nearly all of its p character and becomes an essentially pure s
orbital, violating condition (ii). The triplet sublevel that mixes
with S0 is selected by the direction ofhSO, which lies alongy
(i.e., along the H-H line), perpendicular to the axes of the two
carbon p orbitals involved inA andB. Most of these results
also follow from symmetry: in theC2V point group,A belongs
to b1 andB to a1, the space part of T1 to B1, and the overall
symmetry ofTΘ[x], TΘ[y], and TΘ[z] to A2, A1, and B2,
respectively. Since S0 transforms like A1, onlyTΘ[y] will spin-
orbit couple to it. Numerical calculations37,41agree with these
conclusions.
The 90,90 conformations ofR,ω-alkanediyls with an odd

number of carbon atoms (3, 4, axes of both singly occupied p
orbitals in the plane of the carbon atoms) are “ethanologous”
carbenes in the sense that no-bond resonance structures contain-
ing a triplet carbene substructure can be written as minor
contributors to the valence-bond description of their triplet states
(the importance of such structures will decrease with the
increasing number of lost bonds, i.e., with the length of the
carbon chain). These resonance structures can be viewed as
shorthand symbols indicating the delocalization of the two
nonbonding orbitals byσ hyperconjugation through anti-
periplanar interactions familiar from the usual interpretation of
electron transfer, photoelectron spectra, Grob fragmentation,
spin-spin and hyperfine coupling constants, etc., in terms of
through-bond coupling.
In these structures, the energies ofA andB are equal, and

condition (i) can be satisfied only by the presence of a non-
zero resonance integral between them. This is easily provided
in 1,3-propanediyl (3) by direct through-space interaction
between the main portions of these two orbitals at carbons 1
and 3 for all realistic CCC valence angles, but cannot be
provided in this way for the longer-chain biradicals4. In chains
of all lengths, through-bond coupling provides an additional
opportunity for covalent interaction. This, too, will fall off with

chain length, but less rapidly, and it will depend on the CCC
valence angle. For 1,5-pentanediyl and longer chains (4),
condition (i) will be satisfied rather poorly in this conformation,
and much better in more folded conformations that bringA and
B into through-space interaction. These will be considered in
a later paper.
Condition (ii) is satisfied on both terminal carbon atoms. On

one,A has a large amplitude on the in-plane p orbital of the
radical center andB has some, albeit small, amplitude on the p
orbital participating in the formation of the CC bond. On the
other terminal carbon, the roles ofA andB are interchanged.
The direction of the atomic vectorial contributions is alongx,
perpendicular to the plane of the carbon atoms. The internal
carbon atoms are likely to make smaller contributions, since
there, the coefficients ofA andB are both small.
Since we now have more than one contributing atomic center,

condition (iii) needs to be considered. Do the out-of-plane
vectors provided by the terminal carbons add, or do they cancel?
In the former case, S0 will spin-orbit couple to theTΘ[x]
sublevel, in the latter,SOC will vanish. Working out the
directions from the rules given above shows that the two
contributions add. An easier way to reach this conclusion is to
use group theory, starting with the symmetry-adapted orbitals
2-1/2(A ( B): in theC2V point group,A + B belongs to a1 and
A - B to b2, the space part of T1 therefore belongs to B2, and
the overall symmetry ofTΘ[x], TΘ[y], andTΘ[z] belongs to
A1, A2, and B1, respectively. Since S0 transforms like A1,
symmetry permitsTΘ[x] to spin-orbit couple to it, but the other
two sublevels cannot.
Note that the conclusion that all three conditions are satisfied

andSOCwill not vanish (but will fall off with the chain length)
was reached for reasons different from those applicable to the
previous example of carbene, even though the presence of
carbene-like resonance structures was important. The inherent
orthogonality of the axes of the singly occupied orbitals of
carbene provided large one-center contributions and permitted
condition (ii) to be satisfied in both cases, but in carbene itself
the only way to satisfy condition (i) was to introduce inequiva-
lence betweenA andB by bending, whereas in 1,3-propanediyl
it was achieved by introducing a resonance integral (making
the ends interact).
The 0,0 conformation of the odd-carbon biradical chains (5,

both p orbital axes perpendicular to the plane of carbon atoms)

Table 1. Symmetry Aspects of Spin-Orbit Coupling in All-Anti R,ω-Alkanediyl Biradicalsa

no.b
point
grpc

(A)
A+B

(B)
A-B T1 Θ[x] Θ[y] Θ[z] TΘ[x] TΘ[y] TΘ[z] S0

allowed
subleveld

1 D∞h (πu) Σg
- Πg Πg Σg

- Πg Πg Σg
+ ∆g

2 C2V (b1) (a1) B1 B2 B1 A2 A2 A1 B2 A1 y
3, 4 C2V a1 b2 B2 B2 B1 A2 A1 A2 B1 A1 x
5 C2V b1 a2 B2 B2 B1 A2 A1 A2 B1 A1 xe

6, 15 C2 b a B B B A A A B A x,y
7 Cs a′ a′′ A′′ A′′ A′′ A′ A′ A′ A′′ A′ x,y
8, 16 Cs (a′′) (a′) A′′ A′′ A′′ A′ A′ A′ A′′ A′′ zf

9 D2h b3u b2g B1u B3g B2g B1g B2u B3u Au Ag

10 D2d e A2 E E A2 E E A1 B1

11 D2 b3 b2 B1 B3 B2 B1 B2 B3 A A z
12 C2h bu ag Bu Bg Bg Ag Au Au Bu Ag

13 C2h au bg Bu Bg Bg Ag Au Au Bu Ag

14 Ci au ag Au Ag Ag Ag Au Au Au Ag

a Irreducible representations for the symmetry-adapted one-electron functions singly occupied inT1 [localized,A andB, in parentheses, or delocalized,
A ( B], the two-electron triplet space functionT1, the two-electron triplet spin functionsΘ[x], Θ[y], andΘ[z], the total two-electron triplet wave
functions TΘ[x], TΘ[y], and TΘ[z], and the total two-electron singlet wave function S0. bOnly biradical geometries that have at least some symmetry
elements are included. For the others, TΘ[x], TΘ[y], and TΘ[z] are all allowed by symmetry to spin-orbit couple with S0. c Point group, with the
z axis vertical and they axis horizontal in the formula as drawn in Chart 1 (carbon atoms in the plane of the paper). Exceptions:6, 7, 14, and15
are drawn in perspective (in6, z is the 2-fold symmetry axis andy is the other in-plane axis, and in7, xy is the symmetry plane), in11 z is the C-C
line, perpendicular to the plane of the paper,y is horizontal andx vertical, and in8 and12-16 z is perpendicular to the plane of carbon atoms,
while x andy lie in this plane.d Labels of triplet sublevels that are symmetry allowed to mix with S0. eAlthough TΘ[x] is symmetry allowed to
couple with S0, in the present approximation this spin-orbit coupling vanishes.f Although TΘ[z] is symmetry allowed to couple with S0, in the
present approximation this spin-orbit coupling vanishes.
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satisfies condition (i) by through-space interaction and hyper-
conjugation for all chain lengths (these two contributions to the
resonance integral have opposite signs and cancel for certain
CCC valence angles in the case of 1,3-propanediyl42), but it
does not satisfy condition (ii) sinceA and B are both ofπ
symmetry and cannot each comprise a different p orbital on
any one center. Condition (iii) does not need to be examined
to reach the conclusion that SOC vanishes.
This result does not follow from symmetry alone: in theC2V

point group,A + B belongs to b1 andA - B to a2, the space
part of T1 to B2, and the overall symmetry ofTΘ[x], TΘ[y],
andTΘ[z] to A1, A2, and B1, respectively. Since S0 transforms
like A1, TΘ[x] is symmetry allowed to spin-orbit couple to it,
but the other two sublevels are not. However, the allowed
coupling depends on the very small two-center terms only, and
these have been neglected in the present model.
At the partially twisted symmetric conformations,φ,φ (6,

conrotatory,C2) andφ,-φ (7, disrotatory,Cs), conditions (i),
(ii), and (iii) are all satisfied. For6, the overall symmetries of
the triplet sublevels are A for thex andy directions, so these
two couple to S0 (for TΘ[z] the symmetry is B and it does not
couple). For7, the symmetries are A′ for thex andy directions,
so these sublevels again couple to S0 (for TΘ[z] the symmetry
is A′′ and it does not couple).
Among less symmetrical configurations, the “semirotatory”

Cs 0,90 geometry8 fails to satisfy condition (i). One of the
localized orbitals is ofπ and the other ofσ symmetry, so their
resonance integral must vanish, and their energies are not
sufficiently different for one of them to acquire both electrons
in S0 at the cost of substantial charge separation. We conclude
thatSOCvanishes within the present model, even though the
coupling of S0 to TΘ[z] is allowed by symmetry: atCs

geometry, the overall symmetries of theTΘ[x], TΘ[y], and
TΘ[z] sublevels are A′, A′, and A′′, respectively, and that of S0
is A′′.
At partial twist angles (0,φ or φ,90 geometries), all three

conditions are satisfied, andSOCdoes not vanish.
(b) Even Number of Carbon Atoms. Ethylene satisfies

condition (i) but violates condition (ii) when it is planar (9),
and violates condition (i) but satisfies condition (ii) when it is
orthogonally twisted (10), so in both limiting cases,SOC
vanishes (at the latter geometry, ethylene is a perfect biradical
and this result is obviousa priori). This agrees with group
theory: the overall symmetries of the three triplet sublevels of
the planarD2h molecule are B2u, B3u, and Au, and none can
couple to the S0 state (Ag). In the orthogonally twistedD2d

molecule, the symmetries are E for the degenerate pair of
sublevelsTΘ[x] and TΘ[y], and A1 for TΘ[z]. Since S0
transforms according to B1, it cannot spin-orbit couple with
any of the three triplet sublevels.
In partially twisted ethylene (11), however, conditions (i),

(ii), and (iii) are all fulfilled and S0 spin-orbit couples with
TΘ[z], which is of A symmetry in the D2 group, whileTΘ[x]
transforms like B2 andTΘ[y] like B3. As mentioned above,
condition (ii) is satisfied by delocalization of the p orbital of
each carbon atom of the twistedπ bond into the orbitals of the
CH2 group on the other carbon. The degree of such hypercon-
jugative delocalization is small, and the net resultingSOC is
also relatively small.
In a fashion entirely analogous to what we have seen for odd-

carbon R,ω-alkanediyls, longer even-carbon tripletR,ω-al-
kanediyls can be viewed as “ethanologous” triplet ethylenes for
the purpose of understanding the delocalization of their unpaired

electrons. In order to contribute to the fulfilment of condition
(ii), these ethylene substructures need to be at geometries other
than planar ethylene, and preferably close to orthogonal ethylene.
At 90,90 (C2h) conformations (12), 1,4-butanediyl and its

longer analogues satisfy conditions (i) and (ii), but fail condition
(iii). This is immediately obvious from symmetry:TΘ[x],
TΘ[y], andTΘ[z] transform like Au, Au, and Bu, respectively,
and cannot couple with S0, which transforms according to Ag.
At 0,0 (C2h) conformations (13), these biradicaloids satisfy
condition (i) but fail condition (ii). Sublevel symmetries are
the same as in12, andSOCagain vanishes.
At partially twisted conrotatoryφ,φ (Ci) conformations14

with parallelA andB orbital axes, condition (i) is clearly fulfilled
and condition (ii) may be met, but condition (iii) is not. All
three triplet sublevels are of Au symmetry and cannot couple
with S0, which is of Ag symmetry. In contrast, at partially
twisted disrotatoryφ,-φ (C2) conformations15, all three
conditions are satisfied. The sublevelsTΘ[x], TΘ[y], and
TΘ[z] transform like A, A, and B, respectively, so the first two
spin-orbit couple to S0, which also transforms like A.
The “semirotatory”Cs 0,90 geometry16 does not satisfy

condition (i), since one of the orbitals is ofπ and the other of
σ symmetry, causing their resonance integral to vanish, and since
their energies are similar. At thisCs geometry, the overall
symmetries of the triplet and singlet levels are the same as in
8. Once again, the coupling between S0 andTΘ[z] is symmetry
allowed, but is due only to terms neglected in the simple model.
At partial twist angles (0,φ or φ,90 geometries), all three

conditions of the model are satisfied, andSOCdoes not vanish.
Normal and Inverse Heavy Atom Effects. Like other

properties of biradicals and biradicaloids, theirSOC can be
affected by the introduction of inductive and/or conjugating
substituents. These operate by the usual modes of action,
primarily by changing the shapes and energies of the orbitalsA
andB and modifying the CI mixing coefficientsCju. They can
affect the size ofSOCin either direction.
In addition, unlike most properties, SOC is known to respond

to the “heavy atom effect” of the substituent, specifically due
to the introduction of a “heavy” (largeZκ andúκ) atom into the
molecule.1,2,4,8 Obviously, such substitution offers an op-
portunity to provide a new atomic contribution with a very large
weightúκ, if A delocalizes onto one andB onto another p orbital
on the heavy atom. IfZκ, and thusúκ, are sufficiently large,
even a very moderate degree of participation by the p orbitals
of the heavy atom inA andBmay be sufficient for its vectorial
contribution to dominate those from the lower atomic number
atoms originally present. Often, the introduction of a heavy
atom therefore greatly increases the total length of theSOC
vector, and changes its direction as well. This is the origin of
the normal “heavy atom effect”.
However, the vectorial atomic contribution from the heavy

atom substituent toSOCmay also be merely comparable in
size to the sum of contributions already present. If it happens
to be pointed approximately in the opposite direction, the
introduction of the heavy atom can actually decrease the
resulting length ofSOC. Such an “inverse heavy atom effect”
is rare but known and has been considered puzzling.43 We
suspect that a systematic search, guided by the simple model
outlined here, would probably rapidly uncover additional
instances of this predictable “anomaly”.
In addition to the “internal heavy atom effect” discussed so

far, an “external heavy atom effect” is also well recognized.1,2,4,8

It is due to the presence of atoms of highZκ, andúκ in molecules
that are in immediate contact with the substrate, usually

(42) Doubleday, C. D., Jr.; McIver, J. W., Jr.; Page, M.J. Am. Chem.
Soc.1982, 104, 6533. Goldberg, A. H.; Dougherty D. A.J. Am. Chem.
Soc.1983, 105, 284.

(43) Turro, N. J.; Kavarnos, G.; Fung, V.; Lyons, A. L., Jr.; Cole, T., Jr.
J. Am. Chem. Soc.1972, 94, 1392.
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molecules of solvent, and represents an extremely sensitive
probe of the delocalization of the singly occupied orbitalsA
andB onto neighboring molecules.
Application of the Results. In conclusion, we comment on

two applications of the results that have been obtained.
(a) Limits of Applicability. While the 2-in-2 model is likely

to represent most bitopic44 biradicals adequately, there are many
important photochemical processes that involve biradicals of
higher topicity, i.e., those in which the radical centers also carry
lone pairs, empty valence orbitals, or multiple bonds. For these,
the model should not be applied.
(b) Intersystem Crossing (ISC) in Biradicals. A desirable

description of a process in which a triplet biradical wanders
through a variety of conformations before finally converting to
a stable singlet molecule would call for a molecular dynamics
study in which the variable strength of spin-orbit coupling is
considered continuously and the probability of product formation
is evaluated at all times.27 A knowledge of SOC as a function
of structure is an essential prerequisite.
In many cases, the presently common description,6 based on

the sudden approximation, is probably adequate. In this picture,
the triplet biradical goes through a large number of conforma-
tions in which the T1 and S0 states are nearly degenerate and
its wave function is a rapidly oscillating mixture of singlet and
triplet character, with the triplet dominant at all times. A
decision as to whether the triplet or the singlet potential energy
surface will be followed needs to be taken only when the
biradical reaches a geometry in which the two surfaces separate
in energy. Typically, this is a geometry at which there is either
through-space or through-bond covalent interaction between the
orbitalsA andB. After that, the triplet surface most likely will
dictate the molecular motions (with a probability given by the
average weight of the triplet in the wave function at the time of
decision), but occasionally, the singlet surface will do so (with
the complementary probability given by the weight of the
singlet). After many attempts, the decision will eventually fall
in favor of the singlet, the singlet surface will be followed, and
a stable molecule will be formed.
In many saturated biradicals, the energies of theA andB

orbitals are fairly close, and according to the present model,
the only likely geometries at which SOC will be strong are those
at which there is a significant covalent interaction between the
two radical centers, i.e., just those at which a decision is likely
to be taken. This interaction destabilizes the T1 state and
stabilizes the S0 state, and this has two important consequences.
First, a small but non-zero activation energy should be needed
for the triplet biradical to reach the best geometries for ISC.
Second, immediately after the transition from the T1 to the S0
state, the molecule should find itself part way down a deep abyss
in the S0 potential energy surface, into which it is very likely
to fall immediately. In that sense, T1 to S0 ISC in triplet
biradicals should be concerted with the formation of a new bond.
Experimental evidence for this has been accumulating.45

(c) Zero-Field Splitting Parameters in Triplet States of
Biradicals. A side benefit of the present analysis is insight
into the effect of spin-orbit coupling on theD andE parameters
that are frequently measured to characterize the triplet state of
organic biradicals. They are determined by the energy differ-
ences among the three triplet sublevels in zero magnetic field
and are often interpreted in terms of the spin-spin dipolar
interactions alone, i.e., using only the triplet block of the
Hamiltonian matrix given above. This procedure is correct only

if the effects of spin-orbit coupling matrix elements, also
present in the matrix, are negligible. Although it appears to be
justified in the absence of heavy atoms in the very few cases of
biradicals for which calculations have been reported,33 such as
carbene,41 and also in the cases that we have examined so far,37

it is not yet clear just when the correction for SOC will be
significant.
The proper procedure is to diagonalize the whole Hamiltonian

matrix with the elements ofĤSO included, and only then evaluate
D andE from the energies of the predominantly triplet resulting
levels. In ordinary organic molecules, the SOC elements are
small relative to the triplet-singlet energy difference and their
effects are adequately described by second-order perturbation
theory. It is then seen that they will have no detectable influence
on the ordinarily quite large separations of the singlet levels.
However, the three triplet sublevels are spaced so close together
that even very small differential effects of their coupling to the
singlet states may affect the size of the resultingD and E
parameters.
In perfect biradicals, this is particularly likely if theS[y]Σ

state is low in energy. For this, the sumK′AB + KAB needs to
be small, and this is most likely whenA andB are delocalized
over the same atoms. For instance, in the O2 molecule, where
theS[y]Σ state lies only 1.64 eV above the T1 state, spin-orbit
coupling provides the dominant contribution toD.33 Large
effects might also be found in those biradicaloids in which S0

has largeS[y]Σ character and is nearly degenerate with T1.
Using second-order perturbation theory, assuming that T1 lies

below S0 in energy, and returning to the usual labeling of the
axes, such thatD > 0, E < 0 (i.e.,Dz > Dy > Dx, Tz lowest
andTx highest in energy), the correct values of the zero-field
splitting parameters,D′ andE′, are related to the valuesD and
E calculated from the triplet part of the Hamiltonian matrix alone
(spin dipole-dipole coupling without SOC) by

whereE(Sj) - E(T) is the difference between the energy of the
jth singlet Sj and the average energy of the triplet sublevels.
These expressions show explicitly the three factors that

control the size of the SOC contributions from each singlet Sj

to zero-field splitting in biradicals and biradicaloids: (i) the Sj-
T1 gaps, (ii) the lengths of theSOCj vectors that describe
coupling with the various singlet states Sj, and (iii) the directions
of these vectors in the molecular frame defined by the principal
axes of the spin dipole-dipole coupling tensor. IfSOCj makes
equal angles with all three axes,x, y,andz, its contribution to
the total effect on the zero-field splitting parameters is nil,
regardless of its length. If it is inclined towardz and away
from thexyplane, it will increaseD, and if it is inclined toward
x and away fromy, it will make E less negative. The overall
effect is deduced by summing over the contributions from all
singlet states, weighted by their inverse energies relative toE(T).

Conclusion

The 2-in-2 model of electronic structure deals with the most
localized orbitalsA andB singly occupied in the T1 state and
describes spin-orbit coupling in bitopic biradicals and biradi-
caloids in terms of Sj-T1 spin-orbit coupling vectorsSOCj,
whose components describe the coupling of Sj to Tx, Ty, and
Tz. The length ofSOC0≡ SOCdefines the overall S0-T1 SOC
strength.

(44) Dauben, W. G.; Salem, L.; Turro, N. J.Acc. Chem. Res.1975, 8,
41.

(45) De Kanter, F. J. J.; Kaptein, R.J. Am. Chem. Soc.1982, 104, 4759.
Wagner, P. J.Acc. Chem. Res.1989, 22, 83. Wagner, P. J.; Meador, M.
A.; Zhou, B.; Park, B.-S.J. Am. Chem. Soc.1991, 113, 9630.

D′ ) D + ∑
j

[E(Sj) - E(T)]-1Cjy
2{(h1z

SO)2 -

[(h1y
SO)2 + (h1x

SO)2]/2}

E′ ) E+ ∑
j

[E(Sj) - E(T)]-1Cjy
2 [(h1x

SO)2 - (h1y
SO)2]/2
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In the 2-in-2 model,SOC is given by a product of a scalar
C0y that is characteristic of the CI wave function of the S0 state
and a vectorhSO, characteristic of the orbitalsA andB.
The scalarC0y is the amplitude of the symmetrized hole-pair

structureS[y] in the S0 wave function. It vanishes in perfect
biradicals. Two types of perturbation can mixS[y] into S0, make
C0y non-zero, and induce spin-orbit coupling of S0 with T1: a
covalent interaction ofA andB, and a polarization that causes
one of the hole-pair structures,A2 or B2, to dominate the S0
state.
The vectorhSO is a sum of atomic vectors. Each of these is

provided by a non-hydrogen atom that carries a contribution
from A on one p orbital and fromB on another, is proportional
to the atomic spin-orbit coupling constantúκ, and is a sensitive
function of the through-bond delocalization ofA andB, as well
as geometrical symmetry. These vectors are readily visualized
from the form of the orbitalsA andB, and from a consideration
of standard resonance structures. In addition to ordinary heavy-
atom effects, the vectorial nature of the sum provides for inverse
heavy atom effects.
These concepts are illustrated on the case ofR,ω-alkanediyl

biradicals at various conformations, and their application to
intersystem crossing in biradicals and to the evaluation of zero-
field splitting parameters in EPR spectra of triplets is discussed.
Finally, we point out formal similarities in the quantum
mechanical description of the three singlets permitted in the
model and the three sublevels of the triplet, which allow the
use of angular momentum algebra in both cases.
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Appendix

It is frequently necessary to translate the full two-electron
wave function from an initially chosen one-electron basis set
to another, e.g., from a localized to a delocalized choice of
orbitals, etc. This transformation is most readily accomplished
using the well-developed apparatus of angular momentum
algebra. This is commonly used for this purpose in the spin
space, but is just as useful in the isomorphic geminal space of
the two electrons.
One-Electron Space. Any operator acting in the two-

dimensional one-electron function space spanned bya and b
(wherea is R or A andb is â or B) can be written as a linear
combination of the unit matrix (σ̂2/3) and the three Pauli matrices
σ̂x, σ̂y, andσ̂z. E.g., the Hamiltonian is

By definition of the Pauli matrices, the functionsa andb are
eigenfunctions ofσ̂z, i.e., are adapted to thez axis. This could
be indicated explicitly by calling themazandbz. For spin space,
this z axis lies in real three-dimensional Cartesian space, and
for orbital space,z is the direction of the polarizing perturbation
in the three-dimensional abstract space of perturbations of a
perfect biradical. In order to guarantee cyclic permutation
properties with respect to the indicesx, y, and z, the y- and
x-adapted basis functionsay, by andax, bx are derived fromaz

and bz by application of a+2π/3 and a-2π/3 rotation,
respectively, around an axisn with directional cosinesnx ) ny
) nz ) 3-1/2. The directionsy andx are the directions of axes
in real Cartesian space whena and b are taken to be spin

functions, and they are the directions of the magnetizing
perturbation and the covalent perturbation in the abstract space
of perfect biradical perturbations whena andb are taken to be
orbitals.
Using the standard form46 of the rotation operator for a

particle of spin1/2,

whereω is the angle of rotation and the components of the
unit vectorn are the direction cosines of the axis of rotation,
one obtains for the functions adapted to the axesy andx

In orbital space, the functions adapted to thez axis (the
polarizing operator) are the most localized orbital set, those
adapted to they axis (the magnetizing operator) are the most
delocalized complex orbital set, and those adapted to thex axis
(the covalent perturbation operator) are the most delocalized
“real” (constant complex phase) orbital set.
Two-Electron Space. The two-electron spin and geminal

function spaces are obtained as direct products of the one-
electron spaces of the first and the second electron. Permuta-
tional symmetry permits a factorization of each of these four-
dimensional direct product spaces into a direct sum of a three-
dimensional subspace with elements symmetric with respect to
an interchange of electron labels ([x], [y], and [z], corresponding
to a particle of spin one), and a one-dimensional space with an
element that is antisymmetric with respect to this interchange
([o], corresponding to a particle of spin zero). In geminal space,
wherea is A andb is B, [x] ) S[x], [y] ) S[y], [z] ) S[z], [o]
) T, and in spin space, wherea is R andb is â, [x] ) Θ[x], [y]
) Θ[y], [z] ) Θ[z], [o] ) Σ.
These two-electron bases have been built from thez-adapted

one-electron functionsa ) a z andb ) b z and could be labeled
[x]z, etc. Starting witha y andb y or a x andb x instead, one can
similarly construct the analogous two-electron bases [x]y, etc.,
or [x]x, etc. The standard rotation operators for particles of spin
zero and one show how the two-electron basis set responds to
any rotation of the one-electron basis set:

where the dimensionless operatorĴ is defined by

(Ĵ2/2 is the unit operator andpĴ is the angular momentum
operator).
For instance, applying rotations by+2π/3 and-2π/3 about

an axisn with directional cosinesnx ) ny ) nz ) 3-1/2, we
obtain [o]x ) [o]y ) [o]z, [x]x ) [z]y ) [y]z, [y]x ) [x]y ) [z]z,
[z]x ) [y]y ) [x]z and note that cyclic permutation symmetry of
the three indices is preserved as expected.
Any operator acting in the one-dimensional two-electron

function space spanned by [o] is a simple scalar, and any

(46) Altmann, S. L.Rotations, Quaternions, and Double Groups,
Clarendon Press: Oxford, 1986.

ĥ1 ) h0(σ̂
2/3)+ h ‚ σ̂

Rn
1/2(ω) ) cos(ω/2)- iσ̂ ‚ n sin(ω/2)

a y ) [(1 + i)/2](a z + ib z)

b y ) [(1 + i)/2](a z - ib z)

a x ) [(1 - i)/2](a z + b z)

b x ) [-(1+ i)/2](a z - b z)

Rn
0(ω) ) 1

Rn
1(ω) ) 1- in‚Ĵ sinω - (n‚Ĵ)2 (1- cosω)

Ĵ(1,2)) [σ̂(1)+ σ̂(2)]/2
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Hermitean operator acting in the three-dimensional two-electron
function space spanned by [x], [y], and [z] can be written as a
linear combination of the three operatorsĴx, Ĵy, and Ĵz, their
squaresĴx2, Ĵy2, and Ĵz2, and their anticommutators, (ĴyĴz +
ĴzĴy), (ĴzĴx + ĴxĴz), and (ĴxĴy + ĴyĴx).
The Hamiltonian for the full two-electron problem without

spin-orbit coupling can be written in terms of angular
momentum operators in a way that is completely analogous for
the singlets (geminal space) and the triplets (spin space). Using
the principal axes of the spin-spin dipolar coupling tensor, and

using the most localized set of orbitalsA, B, we have

where in the spin space,Wu ) gâeBu,Wxx ) -D/3+ E,Wyy )
-D/3 - E, Wzz ) 2D/3, and in the geminal space,Wx ) γAB,
Wy ) 2âeB‚(r × ∇)AB, Wz ) δAB - eE‚rAB, Wxx ) 2KAB, Wyy

) 0,Wzz ) 2K′AB.

JA9538391

Ĥ ) ∑
u

(WuĴu + WuuĴu
2), u) x, y, z
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